

36-Channel RGB LED Drivers with I²C Control

EVAL Kit Physical Contents

Item #	Description	Quantity		
		Included	Downloadable	User-Supplied
1	KTD2061 EVB Rev2.0 fully assembled printed circuit board	1		
2	White plastic light diffuser	1		
3	StemmaQT/Qwiic I2C wire harness	1		
4	Adafruit QT Py RP2040 µC fully assembled printed circuit	1		
	board			
5	USB type-A to type-C cable	1		
6	Demo software (pre-loaded on QT Py)	1	By request	
7	EVAL Kit Manual (pre-loaded on QT Py)	1	1	
8	USB 5V/1A power source			1

Quick Start Procedures and Additional Resources

- 1. Using the StemmaQT/Qwiic I²C wiring harness, connect the EVAL Kit PCB to the QT Py PCB. To avoid damage within the connectors, do not insert the StemmaQT/Qwiic connectors upside down.
- 2. Connect the USB cable to the QT Py RP2040 PCB.
- 3. Connect the other end of the USB cable to a USB 5V/1A power source (user-supplied). You may use an AC wall adapter, battery power bank, or an available USB port from a computer.
- 4. When power is applied, the demo software first executes 3 test patterns:
 - a. All 12 RGB modules turn very dim white for 1 second, then bright white for 5 seconds.
 - b. Each RGB takes its turn showing blue, one at a time, and then repeats with green.
 - c. The 12 RGBs show a multi-color palette for 5 seconds. Three of them are dim white on purpose.
- 5. After the test patterns, the demo loops an 8-minute demonstration endlessly until power is removed.
- 6. When desired, remove power by pulling the AC wall adapter from the AC outlet, or by disconnecting the USB cable from the USB power source.
- 7. Optionally, to read or modify the demo software, connect the USB cable to a computer.
 - a. The QT Py RP2040 connects as an 8MB USB flash drive. The software and collateral documents are stored within.
 - b. Open the CircuitPython text file *code.py* with a software editor. Adafruit recommends the freeware *Mu* editor, which is optimized for CircuitPython.
 - c. When editing *code.py*, save changes to the QT Py RP2040. After saving, the code will recompile and execute automatically.
 - d. The *code.py* file is already replicated as *KTD2061_demo_code.txt* on the QT Py RP2040.
- 8. For additional resources:
 - a. KTD2061/58/59/60 Product https://www.kinet-ic.com/KTD2061/
 - b. KTD2061 EVAL Kit <u>https://www.kinet-ic.com/ktd2061euac-mmev02/</u>
 - c. Adafruit QT Py RP2040 <u>https://learn.adafruit.com/adafruit-qt-py-2040/overview</u>
 - d. Adafruit CircuitPython <u>https://learn.adafruit.com/welcome-to-circuitpython/overview</u>
 - e. Mu Editor Installation <u>https://codewith.mu</u>